High-efficiency organic light-emitting diodes based on the gradient doping and
nonlinear cross-fading doping in transporting layers
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Abstract — We have demonstrated that carrier injection and transporting can be fine-tuned via gradient
p-doping and n-doping in organic light-emitting diodes. The doping profile of gradient doping in
transporting layer is ultrahigh at the electrode side, declining gradually with the depth into the device
until the emission layer. This not only ensures perfect charge injection from electrode to organic
transporting layer but also proves an efficient charge transport for light emission. It is proposed that
low doping ratio close to the emission layer may avoid possible quenching of excitons by the diffusion
of dopant as well. A device based on gradient doping has been proved to obtain better carrier injection
and achieve higher external quantum efficiency. To get smoother charge injection and transporting, and
simplify the fabrication process, we have developed a nonlinear cross-fading doping in transporting
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layer, which has been demonstrated to further enhance the current density characteristics.
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1  Introduction

Organic light-emitting diodes (OLEDs) have attracted exten-
sive research interests over the last two decades and have em-
braced the mass production. Despite numerous advantages,
OLEDs still have some issues to be overcome to obtain lower
voltage, higher luminance and efficiency, and better stability.
Charge carrier injection and transporting are two important
processes for light emission. However, because of large en-
ergy barrier between electrode and transporting layer, charge
carriers are difficult to be injected into the organic layers,
which results in high operating voltage and low efficiency.
To solve this problem, an injection layer between electrode
and transporting layer and doped transporting layer have
been introduced.!™

The injection layer reduces the ener%y barrier greatly due
to the generation of a thin dipole layer.” But the mobility of
undoped transporting layer is relatively low; therefore, the
voltage drop over thick transporting layer is still large,
resulting in high operating voltage. On the other hand, doping
appropriate dopant material into transporting layer will gener-
ate additional charge carriers, and these carriers can almost
move freely, resulting increased conductivity. Such conductiv-
ity increase can be up to several orders, and the voltage drop
over such doped layer is negligible. Furthermore, for the
doped transporting layer, a much stronger band bending oc-
curs, and the space charge layer is very thin, which makes
the charge carrier injection much easier via tunneling.5

However, the doping ratio is usually quite low; there is not
enough energy barrier reduce caused by the dipole layer at
the interface of electrode and transporting 1ayer.4

To further reduce the operating voltage, we proposed a
gradient doping profile in the transporting layer, where the
doping concentration adjacent to the electrode is very high
to ensure perfect charge injection, and the concentration de-
crease gradually with the depth into the device until the emis-
sion layer. The medium doping concentration in the middle
of the transporting layer still keeps its conductivity at a high
level. The low concentration close to the emission layer may
avoid the possible quenching of the excitons by the diffusion
of dopants. Our results prove that the gradient doping leads
to the best power efficiency and external quantum efficiency
(EQE). To simplify the process of the gradient doping and di-
minish the interfacial effects, a nonlinear cross-fading doping
is proposed as well. The profile of the cross-fading doping is
nonlinear with continuous decrease from ultrahigh at the
electrode side to ultralow at the emission layer side. It has
been demonstrated that nonlinear cross-fading doping in
transporting layer can further enhance the current density
characteristics.

2 Experimental

Patterned indium-tin—oxide (ITO) substrates are prepared
and precleaned by a multistep solvent process before
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transporting to vacuum thermal evaporator. In this study,
[N-(1-naphthyl)-N-phenyl-amino] biphenyl (NPB) is used as a
hole transporting material and 2,3,5,6-tetrafluoro-7,7.8,
§8-tetracyanoquinodimethane (F4-TCNQ) is the corresponding
p-type dopant. High electron mobility (~1073 em?/V-s)
transporting material VOM1973 is used as electron trans-
porting layer (ETL), and its corresponding n-type dopant is
8-hydroxyquinolinolato-lithium (Liq). All devices are fabri-
cated under a base pressure of 5 x 1078 Torr without breaking
the vacuum. The organic materials, except for the dopants,
are evaporated at a rate of 0.5~1 A/s. At the end, 100-nm-
thick aluminum is deposited as the cathode. The active area
defined by the overlap of the ITO anode and the Al cathode
is 3mm x3mm. The current density—voltage—luminance
characteristics of the devices are measured using a
computer-controlled Keithley 2400 and Topcon BM-7A mea-
surement system. All the measurements are carried out at
room temperature under ambient atmosphere.6

3 Gradient doping in electron transporting layer

First of all, different doping concentrations of Liq in VOM1973
are compared as shown in Fig. 1. The device structures
are ITO/F4-TCNQ (2nm)/NPB (50 nm)/8-hydroxyquinoline
aluminum (Algs) (20 nm)/VOM1973:Liq (40 nm, x wt.%, where
x=0, 20, 30, 40, respectively)/Al (100 nm). The operating volt-
age at 20 mA/em? of device without Liq doping (around 8V)
is greatly higher than that of doped devices, which is due to a
large energy barrier between Al and VOM1973. When the
doping ratio in ETL increases up to 30wt.%, the current
density grows to the highest level, indicating that better electron
injection has been realized with reduced energy barrier.” How-
ever, the upward trend tends to be saturated when the doping
ratio is further increased to 40 wt.%.

To further improve the electron injection and transport,
a gradient doping in transporting layer is introduced with device
structure of ITO/F4-TCNQ (2nm)/NPB (50 nm)/4,4 -bis

(carbazol-9-yl)biphenyl ~ (CBP):tris(2-phenylpyridine)iridium
(Ir(ppy)s) (20nm, 8wt.%)/VOM1973 (10 nm)/VOM1973:Liq
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FIGURE 1 — Current density—voltage characteristics of the devices with
various doping ratio.
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(40-y nm, 30wt.%)/VOM1973:Liq (y nm, 50wt.%)/Liq
(1nm). Here, y is the thickness of n-doped ETL with a high
doping ratio of 50 wt.%. Figure 2 illustrates the I-V characteris-
tics of devices with y changing from 0 to 35. Inset figure shows
the I-V characteristics relative to a reference device without the
50wt.% doped layer. When y increases from 5 to 25, all corre-
sponding devices show better current densities at a low driving
voltage range. Especially when y is set to 5, the maximum
relative current density doubles that of the reference device.
In an n-type doped ETL system, the Fermi level of ETL shifts
towards its lowest unoccupied molecular orbital (LUMO)
level.® With the higher doping concentration of 50 wt.%, Fermi
level moves further towards the LUMO level, and the electron
injection barrier between metal and organic material decreases,
as shown in Fig. 3(a) and (b), resulting in improved injection cur-
rents. In addition, the doped ETLs with various doping
concentrations provide intermediate steps for easier electron
transporting. If the doping concentration is continuously changed
as in a cross-fading profile, a smooth electron transporting path
will be created as illustrated in Fig. 3(c).? With improved electron
injection, the current efficiency of the device increases as
depicted in Fig. 4. It is mainly attributed to better charge carrier
balance, and the best current efficiency is obtained when the
highly doped ETL is 5nm thick.

4  Comparison with gradient doping

In order to compare the gradient doping with the conven-
tional uniform doping, a set of devices are fabricated with Ir
(ppy)s doped in 1.4,7-tris(acetato)-1,4,7-triazacyclononane
(TCTA) as the light-emitting layer.lo’11 The basic device struc-
ture is ITO/F4-TCNQ (2nm)/NPB (50 nm)/TCTA:Ir(ppy)s
(20nm, 8wt.%)/Bphen (10nm)/ETL/Al (100nm), where
ETL for different devices are depicted as follows:

ETLI1: Bphen:Liq (40 nm, 30 wt.%)
ETL2: VOM1973:Liq (40 nm, 30 wt.%)
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FIGURE 2 — Current density characteristics of devices with various
thickness of 50 wt.% doped electron transporting layer at different voltages.
Inset is the current density characteristics relative to that without the highly
doped electron transporting layer.
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crease of doping ratio. (c) The deeper the blue, the higher the doping concentration. So electrons will
be transported by a smooth energy step with gradient n-doping.
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FIGURE 4 — Current efficiency of devices with various thickness of
50 wt.% doped electron transporting layer.

ETL3: VOM1973 (40 nm)/Liq (1 nm)

ETL4: VOM1973:Liq (35 nm, 30 wt.%)/VOM1973:Liq (5 nm,
50 wt.%)

ETL5: VOM1973:Liq (35 nm, 30 wt.%)/VOM1973:Liq (5 nm,
50 wt.%)/Liq (1 nm)

All the devices have a hole blocking layer with 10 nm Bphen,
which is deposited to confine holes in light-emitting layer and
prevent possible energy transfer from Ir(ppy)s to ETL.

Figure 5 illustrates the current density—voltage-luminance
characteristics of five different structures using aforementioned
ETLs. Although there is a better electron mobility of VOM1973
(~103cm?/V-s) than that of Bphen (~10*em?/V-s), the current
density of ETL2 is still lower than ETLI. This may be because
that the LUMO of VOM1973 (2.9¢eV) is slightly higher than
that of Bphen (3.0eV), which hinders the electron injection
from VOM1973 to Bphen somehow. The carrier injection,
rather than the transporting, is the main limitation of the
current density in this study. The speculation is confirmed when
a thin Liq layer is inserted between Al cathode and VOM1973
as in ETL3, where the current density increases significantly
even without doping of ETL. It is clearly indicated that high
concentration Liq near the cathode benefits for the improve-
ment of current density characteristics, which is due to the gen-
eration of an ultrathin dipole layer at the interface of cathode
and ETL. When VOM1973 is doped with Liq as in ETL5, a fur-
ther slight increase of current density, especially at a low voltage
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FIGURE 5 — Current density—voltage-luminance characteristics of
devices with different electron injection and transporting methods. ETL1:
Bphen:Liq (40nm, 30wt.%), ETL2: VOM1973:Liq (40nm, 30wt.%),
ETL3: VOM1973 (40 nm)/Liq (1 nm), ETL4: VOM1973:Liq (35 nm, 30 wt.
%)/VOM1973:Liq (5nm, 50wt.%), ETL5: VOM1973:Liq (35nm, 30wt.
%)/NOM1973:Liq (5 nm, 50 wt.%)/Liq (1 nm).

as ~3.0'V, is observed, which is consistent with the results in Fig. 2
and might be attributed to enhanced electron injection with
highly Liq doped VOM1973. In addition, the operating voltage
of device ETL5 at 10 cd/m? is only 2.6V, which is better than
the others at the same luminance (2.7, 3.2, 2.7, and 3.0V for
ETLI, ETL2, ETL3, and ETL4, respectively).

Because the hole mobility is much larger than the electron
mobility for most organic materials, the electrons are usually
the minority carriers in most OLEDs. Enhancing the electron
injection and transporting can improve the charge carrier bal-
ance and increase the efficiency significantly. As can be seen
from Fig. 6, although ETLI owns a better electron injection,
the EQE is still the lowest of all because Bphen has a poorer
electron transporting ability than VOM1973. With the best
electron injection and transporting, the device using ETL5
obtains the highest efficiency. The EQE at 1000 cd/m® is
16.3%, and the power efficiency is 43.31Im/W, which is 48%
higher than that of the uniformly doped device with ETL2.

5 Nonlinear cross-fading doping

Although the gradient doping obtains the best performance
than the others, the complexity is still an issue for mass pro-
duction. This is because tuning doping ratio in different layers
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FIGURE 6 — Power efficiency-luminance characteristics (closed) and ex-

ternal quantum efficiency (EQE) (open) of devices with different electron
injection and transporting methods.

will cause a waste of time and materials. Therefore, a nonlinear
cross-fading doping is introduced in transporting layers in this
study. The linear cross-fading doping has been used in emission
layer before to extend recombination zone and expand lifetime
in OLEDs."? The doping concentration is linearly changed over
the layer thickness. However, the linear cross-fading is not suit-
able for the transporting layers. At the interface to the elec-
trode, an ultrahigh doping concentration up to 100% is usually
needed to improve the injection, while much lower doping con-
centration is adopted close to the emission layer to avoid possi-
ble quenching of excitons by the dopant. Therefore, a nonlinear
cross-fading doping, which fits the gradient doping profile as
discussed previously, is developed.

Kido has utilized an inline evaporation technique to
facilitate the cross-fading doping process13 and C. W. Tang
also creates a novel thermal deposition boat to control the
deposition rate indirectly with fast rate response.14 But in this
study, we just control the doping rate by tuning the tempera-
ture of the evaporation source.

For comparison among these doping methods, another
five devices with double emission layer have been
fabricated. The structures are ITO/hole transporting layer
(HTL)/TCTA:Ir(ppy)s (5nm, 8wt.%)/TPBi:Ir(ppy); (15nm,
8wt.%)/TPBi (10nm)/ETL/Al (100nm), in which TPBi is
1,3,5-tris  (2-N-phenylbenzimidazolyl)benzene. The doping
types and their doping profiles in HTL and ETL are shown in
Table 1 and Fig. 7.

As depicted in Fig. 8, the cross-fading doping in transporting
layers especially in HTL can further reduce the operating

TABLE 1 — Various doping types and their profiles.

Doping type

Doping profile

Uniform doping HTL (UDHTL)

Uniform doping ETL (UDETL)
Gradient doping HTL (GDHTL)

Gradient doping ETL (GDETL)

NPB:F4-TCNQ (40 nm, 2 wt.%)/

NPB (10 nm)

VOM1973:Liq (40 nm, 30 wt.%)
F4-TCNQ (2 nm)/NPB:F4-TCNQ

(10 nm, 20 wt.%)/NPB:F4-TCNQ

(30nm, 2 wt.%)

VOMI1973:Liq (35 nm, 30 wt.%)/
VOM1973:Liq (5 nm, 50 wt.%)/Liq (1 nm)

HTL, hole transporting layer; ETL, electron transporting layer; NPB.
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FIGURE 7 — Cross-fading doping profiles in hole transporting layer
(CDHTL) and electron transporting layer (CDETL). The doping ratio is
tuned with the deposition thickness increase of HTL (square) and ETL (tri-
angle), respectively.
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FIGURE 8 — Current density—voltage characteristics of devices with
different doping ratio in both hole transporting layer (HTL) and electron
transporting layer (ETL).

voltage significantly because smoother path for charge carriers
even than the gradient doping has been established. The most
charge-balanced device is the gradient doping in both HTL
and ETL whose maximum power efficiency and EQE are
62.91m/W and 19.6%, respectively, as shown in Fig. 9. With
more efficient hole injection and transporting of cross-fading
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FIGURE 9 — Power efficiency and external quantum efficiency (EQE) of
device with gradient doping both in hole transporting layer (HTL) and elec-
tron transporting layer (ETL).



doping in HTL, the efficiency is reduced because of a bit poorer
charge balance. However, this method provides a new way to
improve the carrier injection and transporting and to tune the
charge carrier balance. Moreover, by diminishing the interfacial
effects, the cross-fading doping may have better stability. In
addition, it can also be easily achieved for mass production with
novel evaporation processes.

6  Summary

We show that by using the gradient doping, 16.3% EQE
is achieved for single emission layer at 1000 cd/m? where
the power efficiency is also increased by 47.8% compared
with the uniform doping device. A maximum EQE of
19.6% and a power efficiency of 62.91lm/W are also
obtained with double emission layer using the gradient
doping in HTL and ETL. Finally, an efficient and com-
mercial potential nonlinear cross-fading doping in
transporting layer is also proved to further increase the
carrier injection and transporting.
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