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Abstract 
We propose a see-through near-eye display capable of visual 
correction for -3.00-diopter myopia. Our solution features a 
freeform waveguide, which integrates a corrective lens and 
multiplexed volume holograms. Its key performance including 
diffraction efficiency, field of view, modulation transfer function, 
and distortion has been studied. 
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1. Introduction 
See-through near-eye display (NED) is one of the key components 
of augmented reality (AR), as it serves as an interface connecting 
both real and virtual worlds. Generally, see-through NED can be 
categorized into three main families―combiner-based [1-3], 
waveguide-based [4-8], and retinal-projection-based [9,10]. 
Combiner-based NEDs usually adopt beam splitters [2] or 
semi-reflective mirrors [1], through which real and virtual images 
could overlay with each other. Due to the size of beam splitters 
and semi-reflective mirrors, such NEDs―if designed with a large 
field of view (FOV)―are often bulky and heavy. 
Waveguide-based NEDs can be designed with a compact form 
factor by using planar waveguides [5,6]. But once the light enters 
into a waveguide, the minimum angle, at which it could leave, 
will be confined by the total internal reflection. For this reason, 
FOVs of those NEDs largely hinge on the types of elements for 
out-coupling. Retinal-projection-based NEDs can project images 
directly onto the retina. However, there is an intrinsic problem 
associated with the retinal-projection-based NED in that the 
image formed on the retina is subject to the change of eye’s focus 
[9]. 

Unlike flat panel displays, e.g. liquid crystal display (LCD) [11] 
and organic light-emitting diode (OLED) [12], NED is also a 
wearable device that is close to the eyes. Therefore, optics aside, 
ergonomics needs to be taken into account as well. One of the 
ergonomic issues is how to save the visually impaired users from 
the trouble of wearing extra eyeglasses or contact lens. As an 
earlier attempt, we introduced a combiner-based NED that enables 
the vision correction for myopia [13-15]. In this paper, we 
propose a compact design of see-through NED, highlighted by a 
freeform waveguide, which is essentially an integration of a 
corrective lens, a reflective surface, and multiplexed volume 
holograms (VHs). The proposed structure, design principle, and 
simulation results are to be elaborated in what follows. 

2. Proposed Structure 

The proposed structure of our NED solution is depicted in Fig. 1. 
It mainly consists of a 0.47" microdisplay, a 4-element projection 
lens, and a freeform waveguide. On the freeform waveguide are 
coated a curved, reflective surface, acting as an in-coupler, and 
multiplexed VHs, acting as an out-coupler. The projection lens is 
composed of four different lenses to project the magnified virtual 

image and to collimate the light into a small entrance pupil. After 
entering the waveguide, the collimated light will first be reflected 
by the reflective surface, undergo a total internal reflection, and 
then be coupled out by the multiplexed VHs. In our design, the 
lower surface of the waveguide assumes a concave surface, which 
would exactly match with the focus of the visually impaired eyes. 
As for the aberration, the lower surface is designed to be 
aspherical. 

 
Figure 1. Schematic drawing of the proposed NED. 

3. Design Principle 
The FOV of the near-eye display depends on the FOV of the 
projection lens and the angular bandwidth of the multiplexed 
VHs. The FOV of the projection lens is 54°, which can be derived 
as 
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where D is the diagonal dimension of the microdisplay, which is 
0.47" (11.938 mm) in our design. fp is the effective focal length of 
the projection lens, which is 11.68 mm according to the 
simulation results. 

The FOV of our near-eye display could be limited by the angular 
bandwidth of the multiplexed VHs. The period Λ of a single VH is 
given by 
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where λc is the construction wavelength of the VH and θ is the 
angle between object light and reference light. 

Recalling Bragg’s condition [16], θB is Bragg angle, which can be 
derived as 
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where λ is the incident wavelength. Since our design is 
monochromatic, we let λ = λc. 
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