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Abstract 
We propose a semantic SLAM for augmented reality, which 
combines SLAM-based navigation and YOLO-based object 
detection. Our solution is able to simultaneously create sparse 
map points and annotate them with detected objects. Our 
experiments are implemented with Nvidia’s GTX 1080Ti on 
KITTI’s datasets. 
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1. Introduction 

Augmented reality (AR) is a technology that could merge the 
virtual world with the real world in real time [1]. To seamlessly 
merge the above two worlds, simultaneous localization and 
mapping (SLAM) is regarded as an enabling technology to meet 
this end. The traditional SLAMs are usually employed for the 
navigation. However, for AR applications, semantic SLAMs are 
more advantageous as they could not only tell where it is but also 
what it is. J. Civera et al. proposed a semantic SLAM system, 
which runs EKF monocular SLAM in parallel with an object 
detection thread in search of SURF correspondences and checking 
geometric compatibility [2]. SLAM++ [3] detects real-world 
objects in RGB-D data by matching 3D models of known object 
classes. However, both of these two semantic SLAM systems 
perform well only in a highly-controlled environment due to the 
computational complexity and the localization accuracy of visual 
SLAM. The Dense Planar SLAM system [4] seamlessly maps an 
environment using planar and non-planar regions while tracking 
the sensor pose in real-time. SemanticFusion [5] combines 
Convolutional Neural Networks (CNNs) and a state-of-the-art 
dense SLAM system, ElasticFusion to create a dense semantic 
map. All of the four semantic SLAM systems mentioned above 
are focusing on the dense map, though semantic SLAM on the 
sparse map is fairly enough for some applications in fact.  

In this paper, by combining ORB-SLAM2 [6] and YOLO [7], we 
proposed a semantic SLAM system that can annotate map points 
in sparse maps with detected objects, which performs well on 
KITTI’s datasets when processing monocular or stereo input. 
Firstly, ORB-SLAM2 is chosen as the backbone of our system for 
feature extraction, pose tracking and raw map creating because it 
is a feature-based SLAM system and it can calculate the trajectory 
of the camera in real time and generate the sparse 3D 
reconstruction of the scene. Then, YOLO is chosen for object 
detection because YOLO is a state-of-the-art, real-time object 
detection system. On a Titan X, it processes images at 40-90 FPS 
and has a mAP on VOC 2007 of 78.6% and a mAP of 48.1% on 
COCO test-dev [7].  

2. Proposed Solution 

Architecture: The architecture of the proposed SLAM system is 
outlined in Fig. 1. ORB-SLAM2 is used as the backbone of the 

system. Inspired by the idea of the parallel processing used in Ref. 
[2], ORB-SLAM2 is run in parallel with the detecting thread, in 
which YOLO is implemented to detect objects in keyframes. 
Instead of using the whole image sequence, keyframes are 
adopted to detect objects because in ORB-SLAM2, only map 
points in keyframes will be stored for the final sparse map. When 
the tracking thread finishes inserting a keyframe, it will send this 
keyframe to the local mapping thread. It is designed that the 
keyframe, which is sent to local mapping thread, will be as well 
sent to the detecting thread, which will detect objects with YOLO 
on the received keyframe. When the proposed system is run in 
stereo mode, the detecting thread is designed for the object 
detection on the left image of the keyframe. 

 

Figure 1. Architecture of the proposed semantic SLAM 
system. Threads of ORB-SLAM2 and the designed 
detecting thread are shown in the middle and right, 
respectively. Created by ORB-SLAM2’s tracking thread, a 
new keyframe will be sent to the detecting thread which is 
designed to utilize YOLO to perform object detection on the 
received keyframe and annotate map points in the received 
keyframe with detected objects. 

 

Figure 2. Principle of the proposed system. 6 ORB features 
are assumed in this keyframe, which are corresponding to 
the six map points in the world coordinate system. After 
YOLO finishes object detection, all the ORB features belong 
to the ‘car’ bounding box are found and the corresponding 
map points will be labeled as ‘car’. 
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Algorithm: As shown in Fig. 2, 6 ORB features are assumed in 
this keyframe, which correspond to 6 map points in the world 
coordinate system. After YOLO finishes object detection, all the 
ORB features belong to the ‘car’ bounding box are labeled as 
‘car’ and colored by blue. If the procedure mentioned above is 
done in all the keyframes, all the map points in the sparse map 
belong to cars will be found and the goal of adding semantic 
content to the sparse is achieved. 

YOLO predicts x, y, w, h and confidence for each bounding box 
[7]. It calculates the class-specific confidence scores for each box 
by multiplying the conditional class probabilities and the 
individual box confidence predictions [7]. These class-specific 
confidence scores encode both the probability of that class 
appearing in the box and how well the predicted box fits the 
object [7]. If the class-specific confidence scores are larger than 
the threshold, 0.24 (default value), YOLO will output the results 
of these bounding boxes [7]. However, YOLO does not perform 
well on KITTI’s datasets when using the default value 0.24 of the 
threshold. When the system uses the experienced value 0.5, it will 
seldom come across a case of mistaken identity at the cost of 
missing the distant object, as shown in Fig. 3. But the risk of 
missing the distant object can be compensated by the following 
keyframes which may captures the same object. 

 

Figure 3. (a) Detecting results when YOLO uses the default 
value 0.24 as the threshold of the class-specific confidence 
score. (b) detecting results when YOLO uses the 
experienced value 0.5 as the threshold of the class-specific 
confidence score. According to the result of (a) and (b), it 
can be concluded that when the system uses the 
experienced value 0.5, it will seldom come across a case of 
mistaken identity at the cost of missing the distant object. 

3. Results and Discussion 

Experimental Conditions: Intel Core i7-7700K, Nvidia GTX 
1080Ti, Corsair 16 GB RAM, Samsung 250 GB SSD, Ubuntu 
16.04 LTS, KITTI’s datasets. 

Since there are a large number of cars within KITTI’s datasets, we 
decide to run the SLAM system to annotate all the map points 
with detected cars in order to achieve the best experimental 
results. As shown in Fig. 4, the map points annotated with 
detected cars in the image of the 63th keyframe are definitely in 
the view of the 63th keyframe. Thus, it can be concluded that 
when the system is tested on KITTI’s datasets and uses monocular 
sequences as input, it can successfully annotate map points that 
belong to cars, although the profile of cars is not recognizable. 

As listed in Table 2, when the system is processing monocular 
input, the time cost for object detection is less than the tracking 
time. When it comes to the stereo input, the detecting time is 
almost 1/3 of the tracking time. Since the detecting thread can 
always catch up with the tracking thread, it can be concluded that 
the system can perform SLAM and object detection 
simultaneously when processing monocular or stereo input. 

 

Figure 4. Simulated results (monocular) of the proposed 
semantic SLAM system on KITTI’s datasets. (a) image of 
the 63th keyframe; (b) object detection result of the 63th 
keyframe; (c) corresponding sparse map created by the 
system. A great number of ORB features are on the white 
car (left-bottom) and some on the car (right-bottom). The 
corresponding blue map points are definitely in the view of 
the current keyframe (green triangle), as shown in (c). 

 

Table 1. Tracking time of ORB-SLAM2 on KITTI’s datasets 

Type of input 
Median tracking 

time (ms) 
Mean tracking 

time (ms)
Monocular 23.6523 29.1592 

Stereo 50.0219 53.808 

Table 2. Tracking time and detecting time of the proposed 
SLAM system on KITTI’s datasets 

Type of 
input 

Median 
tracking 
time (ms)

Mean 
tracking 
time (ms) 

Detecting 
time (ms) 

Monocular 24.075 29.3642 <19 

Stereo 50.784 54.4569 <19 
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Besides, since YOLO is implemented on another thread to 
perform object detection, it has few side effects to the 
ORB-SLAM2’s threads. Fig. 5 and Fig. 6 demonstrate the 
difference between the sparse map created by ORB-SLAM2 and 
the sparse map created by the proposed system, respectively. 
According to Table 1 and Table 2, there is only a small increase 
on the tracking time due to the addition of the detecting thread. 

 
Figure 5. Sparse map created by ORB-SLAM2 (monocular) 
on KITTI’s datasets. 

 
Figure 6. Sparse map created by the proposed semantic 
SLAM system (monocular) on KITTI’s datasets. Both Fig. 5 

and Fig. 6 demonstrate the same area, but in Fig. 6 map 
points belong to cars are annotated with detected car. 

 

4. Conclusions 

A semantic SLAM system has been proposed to apply on the 
sparse map and it performs well on KITTI’s datasets. Based on 
the simulations, its key performance including tracking time and 
detecting time has been studied. Since the time cost for object 
detection is less than the tracking time, it can be concluded that it 
can perform SLAM and object detection simultaneously when 
processing monocular or stereo input. Plus, due to the parallel 
processing, the proposed system has few side effects to the 
SLAM’s performance. By supporting both navigation and object 
detection, our semantic SLAM could offer some new possibilities 
that might be difficult with the conventional SLAMs. For 
example, when equipped with a near-eye display [8-10], semantic 
SLAM would allow a user to see not just a three-dimensional 
map, but the labeling of objects that are recognizable. 
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