
Semantic Simultaneous Localization and Mapping for Augmented Reality

Bing Yu, Yang Li, Chao Ping Chen*, Nizamuddin Maitlo, Jiaqi Chen,
Wenbo Zhang, and Lantian Mi

Smart Display Lab, Department of Electronic Engineering, Shanghai Jiao Tong University,
Shanghai, China

Email: ccp@sjtu.edu.cn

Abstract
We propose a semantic SLAM for augmented reality, which
combines SLAM-based navigation and YOLO-based object
detection. Our solution is able to simultaneously create sparse
map points and annotate them with detected objects. Our
experiments are implemented with Nvidia’s GTX 1080Ti on
KITTI’s datasets.

Keywords
SLAM; augmented reality; ORB; YOLO; navigation; semantic;
object detection.

1. Introduction

Augmented reality (AR) is a technology that could merge the
virtual world with the real world in real time [1]. To seamlessly
merge the above two worlds, simultaneous localization and
mapping (SLAM) is regarded as an enabling technology to meet
this end. The traditional SLAMs are usually employed for the
navigation. However, for AR applications, semantic SLAMs are
more advantageous as they could not only tell where it is but also
what it is. J. Civera et al. proposed a semantic SLAM system,
which runs EKF monocular SLAM in parallel with an object
detection thread in search of SURF correspondences and checking
geometric compatibility [2]. SLAM++ [3] detects real-world
objects in RGB-D data by matching 3D models of known object
classes. However, both of these two semantic SLAM systems
perform well only in a highly-controlled environment due to the
computational complexity and the localization accuracy of visual
SLAM. The Dense Planar SLAM system [4] seamlessly maps an
environment using planar and non-planar regions while tracking
the sensor pose in real-time. SemanticFusion [5] combines
Convolutional Neural Networks (CNNs) and a state-of-the-art
dense SLAM system, ElasticFusion to create a dense semantic
map. All of the four semantic SLAM systems mentioned above
are focusing on the dense map, though semantic SLAM on the
sparse map is fairly enough for some applications in fact.

In this paper, by combining ORB-SLAM2 [6] and YOLO [7], we
proposed a semantic SLAM system that can annotate map points
in sparse maps with detected objects, which performs well on
KITTI’s datasets when processing monocular or stereo input.
Firstly, ORB-SLAM2 is chosen as the backbone of our system for
feature extraction, pose tracking and raw map creating because it
is a feature-based SLAM system and it can calculate the trajectory
of the camera in real time and generate the sparse 3D
reconstruction of the scene. Then, YOLO is chosen for object
detection because YOLO is a state-of-the-art, real-time object
detection system. On a Titan X, it processes images at 40-90 FPS
and has a mAP on VOC 2007 of 78.6% and a mAP of 48.1% on
COCO test-dev [7].

2. Proposed Solution

Architecture: The architecture of the proposed SLAM system is
outlined in Fig. 1. ORB-SLAM2 is used as the backbone of the

system. Inspired by the idea of the parallel processing used in Ref.
[2], ORB-SLAM2 is run in parallel with the detecting thread, in
which YOLO is implemented to detect objects in keyframes.
Instead of using the whole image sequence, keyframes are
adopted to detect objects because in ORB-SLAM2, only map
points in keyframes will be stored for the final sparse map. When
the tracking thread finishes inserting a keyframe, it will send this
keyframe to the local mapping thread. It is designed that the
keyframe, which is sent to local mapping thread, will be as well
sent to the detecting thread, which will detect objects with YOLO
on the received keyframe. When the proposed system is run in
stereo mode, the detecting thread is designed for the object
detection on the left image of the keyframe.

Figure 1. Architecture of the proposed semantic SLAM
system. Threads of ORB-SLAM2 and the designed
detecting thread are shown in the middle and right,
respectively. Created by ORB-SLAM2’s tracking thread, a
new keyframe will be sent to the detecting thread which is
designed to utilize YOLO to perform object detection on the
received keyframe and annotate map points in the received
keyframe with detected objects.

Figure 2. Principle of the proposed system. 6 ORB features
are assumed in this keyframe, which are corresponding to
the six map points in the world coordinate system. After
YOLO finishes object detection, all the ORB features belong
to the ‘car’ bounding box are found and the corresponding
map points will be labeled as ‘car’.

Extract
ORB

Initial pose estimation
from last frame or

relocalization

Track local
map

New
keyframe
decision

LOCAL
MAPPING

Keyframe

TRACKING

Object
detecting

Read the
config file

and
weights

Annotate
map points
with labels

Keyframe

LOOP
CLOSING

DETECTING

Frame

ORB-SLAM

30-4 / B. Yu

SID 2018 DIGEST • 391ISSN 0097-996X/18/4701-0391-$1.00 © 2018 SID

Algorithm: As shown in Fig. 2, 6 ORB features are assumed in
this keyframe, which correspond to 6 map points in the world
coordinate system. After YOLO finishes object detection, all the
ORB features belong to the ‘car’ bounding box are labeled as
‘car’ and colored by blue. If the procedure mentioned above is
done in all the keyframes, all the map points in the sparse map
belong to cars will be found and the goal of adding semantic
content to the sparse is achieved.

YOLO predicts x, y, w, h and confidence for each bounding box
[7]. It calculates the class-specific confidence scores for each box
by multiplying the conditional class probabilities and the
individual box confidence predictions [7]. These class-specific
confidence scores encode both the probability of that class
appearing in the box and how well the predicted box fits the
object [7]. If the class-specific confidence scores are larger than
the threshold, 0.24 (default value), YOLO will output the results
of these bounding boxes [7]. However, YOLO does not perform
well on KITTI’s datasets when using the default value 0.24 of the
threshold. When the system uses the experienced value 0.5, it will
seldom come across a case of mistaken identity at the cost of
missing the distant object, as shown in Fig. 3. But the risk of
missing the distant object can be compensated by the following
keyframes which may captures the same object.

Figure 3. (a) Detecting results when YOLO uses the default
value 0.24 as the threshold of the class-specific confidence
score. (b) detecting results when YOLO uses the
experienced value 0.5 as the threshold of the class-specific
confidence score. According to the result of (a) and (b), it
can be concluded that when the system uses the
experienced value 0.5, it will seldom come across a case of
mistaken identity at the cost of missing the distant object.

3. Results and Discussion

Experimental Conditions: Intel Core i7-7700K, Nvidia GTX
1080Ti, Corsair 16 GB RAM, Samsung 250 GB SSD, Ubuntu
16.04 LTS, KITTI’s datasets.

Since there are a large number of cars within KITTI’s datasets, we
decide to run the SLAM system to annotate all the map points
with detected cars in order to achieve the best experimental
results. As shown in Fig. 4, the map points annotated with
detected cars in the image of the 63th keyframe are definitely in
the view of the 63th keyframe. Thus, it can be concluded that
when the system is tested on KITTI’s datasets and uses monocular
sequences as input, it can successfully annotate map points that
belong to cars, although the profile of cars is not recognizable.

As listed in Table 2, when the system is processing monocular
input, the time cost for object detection is less than the tracking
time. When it comes to the stereo input, the detecting time is
almost 1/3 of the tracking time. Since the detecting thread can
always catch up with the tracking thread, it can be concluded that
the system can perform SLAM and object detection
simultaneously when processing monocular or stereo input.

Figure 4. Simulated results (monocular) of the proposed
semantic SLAM system on KITTI’s datasets. (a) image of
the 63th keyframe; (b) object detection result of the 63th
keyframe; (c) corresponding sparse map created by the
system. A great number of ORB features are on the white
car (left-bottom) and some on the car (right-bottom). The
corresponding blue map points are definitely in the view of
the current keyframe (green triangle), as shown in (c).

Table 1. Tracking time of ORB-SLAM2 on KITTI’s datasets

Type of input
Median tracking

time (ms)
Mean tracking

time (ms)
Monocular 23.6523 29.1592

Stereo 50.0219 53.808

Table 2. Tracking time and detecting time of the proposed
SLAM system on KITTI’s datasets

Type of
input

Median
tracking
time (ms)

Mean
tracking
time (ms)

Detecting
time (ms)

Monocular 24.075 29.3642 <19

Stereo 50.784 54.4569 <19

30-4 / B. Yu

392 • SID 2018 DIGEST

Besides, since YOLO is implemented on another thread to
perform object detection, it has few side effects to the
ORB-SLAM2’s threads. Fig. 5 and Fig. 6 demonstrate the
difference between the sparse map created by ORB-SLAM2 and
the sparse map created by the proposed system, respectively.
According to Table 1 and Table 2, there is only a small increase
on the tracking time due to the addition of the detecting thread.

Figure 5. Sparse map created by ORB-SLAM2 (monocular)
on KITTI’s datasets.

Figure 6. Sparse map created by the proposed semantic
SLAM system (monocular) on KITTI’s datasets. Both Fig. 5

and Fig. 6 demonstrate the same area, but in Fig. 6 map
points belong to cars are annotated with detected car.

4. Conclusions

A semantic SLAM system has been proposed to apply on the
sparse map and it performs well on KITTI’s datasets. Based on
the simulations, its key performance including tracking time and
detecting time has been studied. Since the time cost for object
detection is less than the tracking time, it can be concluded that it
can perform SLAM and object detection simultaneously when
processing monocular or stereo input. Plus, due to the parallel
processing, the proposed system has few side effects to the
SLAM’s performance. By supporting both navigation and object
detection, our semantic SLAM could offer some new possibilities
that might be difficult with the conventional SLAMs. For
example, when equipped with a near-eye display [8-10], semantic
SLAM would allow a user to see not just a three-dimensional
map, but the labeling of objects that are recognizable.

5. Acknowledgements

Science and Technology Commission of Shanghai Municipality
(1701H169200); Shanghai Jiao Tong University (AF0300204,
WF101103001/085); Shanghai Rockers Inc. (15H100000157).

6. References

[1] W. Barfield, Fundamentals of Wearable Computers and
Augmented Reality 2nd Edition (CRC Press, 2015).

[2] J. Civera, D. Galvez-Lopez, L. Riazuelo, J. D. Tardos, and J.
M. M. Montiel, “Towards semantic SLAM using a
monocular camera,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems (2011), pp. 1277–1284.

[3] R. F. Salas-Moreno, R. A. Newcombe, H. Strasdat, P. H. J.
Kelly, and A. J. Davison, “SLAM++: simultaneous
localisation and mapping at the level of objects,” in IEEE
Conference on Computer Vision and Pattern Recognition
(2013), pp. 1352–1359.

[4] R. F. Salas-Moreno, B. Glocker, P. H. J. Kelly, and A. J.
Davison, “Dense planar SLAM,” in IEEE International
Symposium on Mixed and Augmented Reality (2014), pp.
157–164.

[5] J. McCormac, A. Handa, A. Davison, and S. Leutenegger,
“SemanticFusion: dense 3D semantic mapping with
convolutional neural networks,” in IEEE International
Conference on Robotics and Automation (2017), pp. 4628–
4635.

[6] R. Mur-Artal and J. D. Tardos, “ORB-SLAM2: an
open-source SLAM system for monocular, stereo, and
RGB-D cameras,” IEEE Transactions on Robotics 33(5),
1255–1262 (2017).

[7] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You
only look once: unified, real-time object detection,” in IEEE
Conference on Computer Vision and Pattern Recognition
(2016), pp. 779–788.

[8] L. Zhou, C. P. Chen, Y. Wu, Z. Zhang, K. Wang, B. Yu, and
Y. Li, “See-through near-eye displays enabling vision
correction,” Opt. Express 25(3), 2130–2142 (2017).

30-4 / B. Yu

SID 2018 DIGEST • 393

[9] Y. Wu, C. P. Chen, L. Zhou, Y. Li, B. Yu, and H. Jin,
“Design of see-through near-eye display for presbyopia,”
Opt. Express 25(8), 8937–8949 (2017).

[10] C. P. Chen, L. Zhou, J. Ge, Y. Wu, L. Mi, Y. Wu, B. Yu, and
Y. Li, “Design of retinal projection displays enabling vision
correction,” Opt. Express 25(23), 28223–28235 (2017).

30-4 / B. Yu

394 • SID 2018 DIGEST

