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Abstract 
We present a visual simultaneous localization and mapping, in 
which a deep neural network is adopted for the loop detection. Its 
working principles, including the tracking, local mapping, loop 
detection, and global optimization, are set forth in detail. Its overall 
performance regarding the loop detection and trajectory estimation 
is investigated. 
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1. Introduction 
Over the past two decades, simultaneous localization and mapping 
(SLAM) has been gaining ground in the applications such as 
augmented reality [1], autonomous driving etc. With SLAM, not 
only the trajectory of the moving object can be estimated, but also 
the surrounding three-dimensional scene can be reconstructed in 

as lasers, inertial measurement units, cameras etc
proposed. Visual SLAM [2], among others, refers to a type of 
SLAM, which merely relies on the cameras. Further, they can be 
divided into two subcategories, i.e. the feature-based and direct. For 
example, MonoSLAM [3], PTAM [4] and ORB-SLAM [5] are the 
feature-based SLAMs. On the other hand, LSD-SLAM [6] and 
DTAM [7] are known as the direct SLAMs. In this paper, a feature-
based visual SLAM is introduced, in which both the points and 
lines are extracted as features to enhance the accuracy and 
robustness. Plus, a deep neural network (DNN) based loop 
detection is adopted to recognize the previously visited scenes. 

2. Proposed Architecture 
Architecture: Fig. 1 outlines the architecture of the proposed 
SLAM, which consists of four main threads [8]. Thread 1. 
Tracking: Through this thread, the extraction and tracking of points 
and lines are completed; the camera’s localization is obtained and 
the local map is tracked; and whether the current frame is a 
keyframe is determined. This thread leverages the optimization to 
minimize the re-projection error. Only the camera’s pose in the 
local map will be treated as the state variables. Thread 2. Local 
Mapping: The local maps and keyframes are managed and 
optimized, including the keyframes inserting and culling, and 
features creating and culling. The 3D spatial features, i.e. points 
and lines, are assigned as optimization variables. Thread 3. Loop 
Detection: The loops are detected by the DNN, and the 
accumulated error through the loop fusion is consequently 
corrected. Thread 4. Global Optimization: This thread reduces the 
accumulated errors so as to correct the camera trajectory. 

Computing Process: Fig. 2 shows the computing process of 
proposed SLAM, which involves two parallel threads executed for 
points and lines, respectively [9]. After the points and lines are 

extracted and described, feature matching is carried out, followed 
by the camera pose evaluation and scene reconstruction. 

 

Figure 1. Architecture of the proposed SLAM. 

 
Figure 2. Computing process of the point-based and line-
based threads. 

3. Loop Dectection 
Training: Our DNN for loop detection, which is basically a 
stacked auto encoder, is built on TensorFlow, an open-source 
platform for machine learning. The training dataset comes from the 
TUM RGB-D benchmark, which contains both the RGB-D images 
and their ground truth trajectories. Each sequence of the images is 
randomly sampled, and 30% of them are allocated for training, 
while 20% for testing the ability of the network to represent other 
images. In order to obtain accurate and robust features of the trained 
network, eight hyper-parameters related to the deep neural network 
are assigned in the process of training visual features, which are 
itemized in Table 1. The auto encoder comprises a total of three 
hidden layers, and the units in each layer is 200, 50 and 50, 
respectively. Firstly, the influence of some hyper-parameters on the 
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performance of the neural network is evaluated. The corruption 
level, which corresponds to the de-noising, is added to the weight 
matrix of the first hidden layer. Since the noises always exist in the 
images, adding the corruption is indispensable for increasing the 
robustness and preventing the network from being over-fitted. In 
the absence of corruption, namely the corruption level is 0, in the 
weight matrix from the hidden layer, the meaningful information in 
the image will be clouded by the noise, as shown in Fig. 3(a). When 
the corruption is present, as shown in Fig. 3(b), Fig. 3(c) and Fig. 
3(d), sparse edge features of the images can be observed. Out of 
different corruption levels, the optimal corruption level is obtained 
at 12%. 

Table 1. Hyper-parameters defined for feature training. 

Parameter Value Description 

nhidden [200,50,50] units in each layer 

 0.1 learning rate 

 0.002 penalty factor of continuity 

 0.005 penalty factor of sparsity 

lc 0.12 corruption level 

sh 0.05 sparsity threshold 

nbatch 10 batch size of SGD 
nepoch 20 times of iteration 

 
Figure 3. Visualization of the structures trained (10 × 10 units 
in the result are selected) from the hidden layer at four 
different corruption levels: (a) 0, (b) 5%, (c) 12% and (d) 30%. 
Sparsity: Fig. 4 shows the average response of the images in the 
hidden units. The impact of adding the corresponding penalties on 
the solution is judged from the perspective of sparsity. With a 
sparse penalty in the loss function, most of the useful information 
in the trained results is preserved, and the redundant features in the 
network, which are irrelevant to the current training task, are 
discarded. Adding the sparsity penalty can prevent the network 
from being over-fitted, and eliminate the redundant features in the 
network. In addition, it can reduce the computational complexity in 
the training of the network parameters, and make the network more 
interpretable. 

 
(a) 

 
(b) 

Figure 4. Average response of the hidden units in the 
images: (a) with the sparsity penalty, and (b) without the 
sparsity. 
Similarity: The difference matrix, computed by the first hidden 
layer response, is used for detecting the loops [8]. A value that is 
lower than the threshold indicates that a loop candidate is detected. 
The similarity matrix, on the other hand, is responsible for fusing 
the loops between these candidate frames and current frames. Fig. 
5 shows the comparison results of the feature graph and their 
difference in two scenes. In the same scene, the differences of the 
feature representation are very small, while in the different scenes, 
the feature differences are relatively large. 

 
Figure 5. Comparison of the feature graphs in two scenes. 
(a) In the same scenes, the differences of the feature 
representation are small. (b) In the different scenes, the 
feature differences of the feature representation are large. 
Precision-Recall Curve: To evaluate the performance of trained 
features for loop detection, the precision-recall curve is calculated. 
The precision-recall curves of two competing methods on TUM 
RGB-D benchmark are shown in Fig. 6. It can be seen that the 
performance of the deep neural network is better than that of the 
bag-of-words (BoW). In practical scenes, once a loop is detected, 
its neighboring frames will also be detected with the current frame, 
therefore a recall rate approaching 50% is sufficient. When the 
recall rate hits 50%, the accuracy of the DNN-based loop detection 
is about 10% higher than that of the traditional BoW. 
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Figure 6. Precision-recall curves of the deep neural network 
and bag-of-word. 
Trajectory Estimation: The sequence fr2/pioneer_slam in TUM 
RGB-D benchmark is selected to evaluate the performance of the 
loop detection. The estimated trajectory and the ground truth are 
compared in Fig. 7. It can be seen that the proposed method 
accurately detects the loops of the scene, and the estimation 
trajectory agrees well with the ground truth. 

 
Figure 7. Estimated trajectories with loops. Image (a) and 
image (b) are captured in the same location at different time. 
(c) the estimated trajectory versus the ground truth. 

4. Localization 
Settings: Localization is evaluated in terms of the accuracy and 
robustness of trajectory estimation. Based on the indoor datasets 
known as TUM RGB-D benchmark, the proposed SLAM is 
compared with other visual SLAMs, including PTAM, LSD-
SLAM and ORB-SLAM, to evaluate their localization accuracies. 
The image sequences, which are not suitable for monocular visual 
SLAM in TUM RGB-D benchmark, are removed, and 

consequently only 10 relative sequences are selected. The absolute 
median RMS error serves as the metric for comparison, and it can 
be computed through a python script provided by the benchmark. 
Before calculating the error, the similarity transformation is applied 
to all the trajectories to align the data. For the sake of reducing the 
amount of calculation, only the keyframes extracted from the image 
sequence are calculated. 

TUM RGB-D Test: Table 2 summarizes the results of the absolute 
median RMS errors of the camera trajectories executed for over 
five times in each sequence. In all these 10 indoor scenes, the 
proposed SLAM exhibits a high accuracy in the trajectory of 
camera compared with others. In particular, in the floor and office 
scenes containing abundant lines, the localization accuracy of the 
proposed method is much higher than the point-based ORB-
SLAMs. By contrast, PTAM was unreliable in several scenes since 
it fails in 6 out of 10 sequences. In addition, LSD, which is a direct-
based method, also loses its trajectory in 2 scenes, and its 
localization accuracy is much lower than that of our SLAM. 

Table 2. Absolute median RMS errors (cm) of camera 
trajectories on TUM RGB-D benchmark. 

Sequence ORB-SLAM PTAM LSD-SLAM Proposed 
SLAM 

fr1_xyz 1.41 1.23 9.21 1.34 

fr1_desk 1.69 x 10.65 1.66 

fr1_floor 5.64 x 38.07 3.43 

fr2_xyz 0.64 0.49 2.15 0.56 

fr2_desk_person 0.63 x 31.73 6.34 

fr2_360_kidnap 4.99 2.63 x 3.78 

fr3_office 4.35 x 38.53 2.13 

fr3_sit_xyz 0.80 0.95 7.84 0.66 

fr3_walk_xyz 1.64 x 12.44 1.78 

fr3_walk_halfsph 1.92 x x 1.70 

KITTI Test: As for the outdoor scenarios, KITTI, an outdoor 
dataset with the ground truth, is used for the experiments. It 
contains 22 sequences collected from outdoor autonomous driving 
scenes. In order to highlight the performance of the SLAM after 
adding the lines into the features, four representative sequences: 01, 
03, 07 and 09 with sufficient lines are picked as test sequences. The 
trajectories obtained by the proposed SLAM, ORB-SLAM and 
points and lines based stereo visual odometry (PLSVO) are 
compared with the ground truth, as shown in Fig. 8. The trajectories 
of our SLAM overlap better with the ground truth than the ORB-
SLAM and PLSVO. Plus, the proposed SLAM exhibits good 
robustness of loop detection at the same time. As can be seen from 
Fig. 8(a), our SLAM works well in Sequence-01 (highway), while 
the ORB-SLAM fails. This is because the number of points 
appearing on the highway scene are insufficient. On the contrary, 
in our SLAM being added with the lines, the number of features 
available for matching and tracking increase substantially. 
Especially in the linear running stage, the estimated trajectory of 
our SLAM agrees well with the ground truth, since there is an 
adequate amount of lines. Besides, PLSVO, which adopts the 
violent matching between the extracted features in the visual 
odometry, greatly suffers from the accumulated errors due to the 
absence of loop detection. Though able to work in Sequence-01, 
the trajectories of PLSVO deviate far away from the ground truth 
as the distance increases. 

(a)

(c)
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Figure 8. Estimated trajectories of the proposed SLAM, 
PLSVO, ORB-SLAM, and ground truth from the four 
sequences from KITTI: (a) sequence-01, (b) sequence-03, 
(c) sequence-07, (b) sequence-09. 
Localization Accuracy & Robustness: Table 3 lists the 
results of the absolute median RMS errors of keyframe trajectories 
in each sequence, from which it can be seen that the proposed 
SLAM outrivals the point-based ORB-SLAM and direct-based 
PLSVO with better localization accuracy and robustness. 

Table 3. Absolute median RMS errors (unit: meter) of 
keyframe trajectories on KITTI dataset. 

Sequence ORB-SLAM PLSVO Proposed 
SLAM 

01 N/A 314.07 19.48 
03 2.63 23.41 2.39 
07 3.45 12.81 3.93 
09 7.72 25.96 5.27 

5. Conclusions 
A visual SLAM, which features both points and lines and employs 
DNN for the loop detection, has been demonstrated. Its overall 
performance regarding the trajectory estimation and loop detection 
has been investigated. Our experimental results indicate that the 
proposed SLAM, compared to its counterparts, shows better 
accuracy and robustness during the trajectory estimation. As for the 
loop detection, DNN turns out to be superior to the traditional 
BoW, as it could decrease the accumulated errors of the estimated 
trajectories and reconstructed scenes. 
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