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Abstract 
We present a method of simultaneous tracking, tagging and 

mapping (STTM) for the augmented reality (AR) by feeding off 

the deep-SORT-based object tagging and lightweight 

unsupervised deep loop closure. 
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1. Proposed Method 

Pipeline: Fig. 1 outlines the pipeline of the proposed STTM. 
Our method starts with measurement preprocessing. All 
necessary values for bootstrapping the subsequent nonlinear 
optimization-based visual-inertial odometry (VIO) are obtained 
by initialization [1]. The VIO module closely combines the 
position and pose data of the inertial measurement unit (IMU) 
with the re-tracked feature from the closed loop detection to 
complete the re-location. Finally, the pose graph module 
performs the global pose graph optimization to eliminate 
cumulative error and to enable the map reuse. 

 
Figure 1. Pipeline of the proposed STTM, which features 
deep-SORT-based object tagging and lightweight 
unsupervised deep loop closure. 

Platform: Intel Core i9-9880H; 16GB 2666MHz DDR4 
memory; AMD Radeon Pro 5500M; macOS Big Sur 11.2.1; 
iPad Pro 12.9-inch (4th generation); ARKit 4; MOT16 
benchmark. 

2. Results and Discussion 

Tracking: In the initialization stage of our experiment, a virtual 
box generated by the extracted feature point information is 
inserted into the coordinate, as shown in Fig. 2. Then, an 
estimated trajectory with a closed loop is recorded for testing the 
STTM, as shown in Fig. 3, by which the x/y/z coordinates of the 
camera, total distance of travel, and number of features can be 
tracked in real time. 

 
Figure 2. A virtual box is inserted into the coordinate 
during the initialization stage. 

 

Figure 3. Indoor experimental result for proposed STTM. 
Total trajectory length is 27.23 m. A closed loop is 
recorded for testing the STTM. 

 
Tagging: Deep SORT [2], which is based on the Kalman 
filtering and frame-by-frame data association with Hungarian 
method, performs smoothly at high frame rates. Meanwhile, 
with a convolutional neural network (CNN), it can improve the 
robustness against misses and occlusions and it is also able to 
recognize the pre-trained objects, including the table, chair, 
window, wall, ceiling, floor etc., as shown in Fig. 4. Compared 
with other object tracking algorithms, it exhibits superior 
performance in terms of the accuracy and reliability. 
Specifically, it has relatively low identity switches (781) and 
mostly lost rate (8.2%) on the MOT16 benchmark. 
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Figure 4. Object tagging by the deep SORT. 

Point Cloud: To generate the 3D point cloud with the depth 
information, LiDAR scanner, which is based on the time-of-
flight (ToF) technique, is employed to measure the distance 
between the objects and camera. Those points are organized 
using a certain data structure. The codes, as shown in Fig. 5, are 
written in Swift programming language, with which the 
vertexID, spatial information etc. can be directly obtained using 
the class in ARKit. Plus, the confidence and threshold can be 
tweaked to reduce the noise and to remove the incomplete data. 

 
Figure 5. Codes to acquire the point data on ARKit. 

Mapping: With the point cloud, a polygonal algorithm is 
adopted to generate the meshes. We choose Delaunay 
triangulation algorithm for its simplicity and stability. Delaunay 
triangulation has the following properties: (1) it runs in O (N log 

N) time; (2) it maxes out the minimum angle, which makes the 
triangulation unique for most cases [3]. Fig. 6 plots the result of 
Delaunay triangulation when applied to 20 random points. 

 
Figure 6. Delaunay triangulation when applied to 20 
random points. 

Loop Closure: As for the loop closure, instead of resorting to 
the conventional bag-of-words model, lightweight unsupervised 
deep loop closure [4] is employed to compensate the camera 
pose variations by translating high-dimensional raw images into 
low-dimensional descriptor spaces. We choose an unsupervised, 
convolutional autoencoder network, which is designed for the 
loop closure. It is capable of the robust and efficient location 
identification. Our model could extract features directly from the 
original image in an unsupervised manner, without the need of 
requiring the training data with tags or being trained in a specific 
environment, which makes it more lightweight and versatile. 

 

(a) 

 

(b) 

Figure 7. Outdoor experimental result of the proposed 
STTM. Total trajectory length is 1.2 km. (a) The 
overlapped trajectory is composed of two round-trip paths, 
which are superimposed onto a satellite image for the 
comparison. (b) Trajectory (red) and feature points (blue). 



International Conference on Display Technology 2021 (Volume 52, Issue S2) 

33 
 

3. Conclusions 
As compared to the existing methods of simultaneous 
localization and mapping (SLAM) [5–7], our STTM offers two 
major advantages. First, object tagging is added to the 
framework of SLAM. Second, lightweight CNN-based loop 
closure is more robust and suitable for wearable AR devices [8]. 

4. Acknowledgements 
This work is sponsored by National Natural Science Foundation 
of China (61901264, 61831015) and Science and Technology 
Commission of Shanghai Municipality (19ZR1427200). 

5. References 
[1] T. Qin, P. Li, and S. Shen, “VINS-mono: a robust and 

versatile monocular visual-inertial state estimator,” IEEE 

Transactions on Robotics 34(4), 1004–1020 (2018). 
[2] N. Wojke, A. Bewley, and D. Paulus, “Simple online and 

realtime tracking with a deep association metric,” in 24th 
IEEE International Conference on Image Processing 

(ICIP), pp. 3645–3649 (2017). 
[3] M. H. Gross, O. G. Staadt, and R. Gatti, “Efficient 

triangular surface approximations using wavelets and 
quadtree data structures,” IEEE Transaction on 

Visualization and Computer Graphics 2(2), 130–143 

(1996). 
[4] A. R. Memon, H. Wang, and A. Hussain, “Loop closure 

detection using supervised and unsupervised deep neural 
networks for monocular SLAM systems,” Robotics and 

Autonomous Systems 126, 103470 (2020). 
[5] B. Yu, Y. Li, C. P. Chen, N. Maitlo, J. Chen, W. Zhang, 

and L. Mi, “Semantic simultaneous localization and 
mapping for augmented reality,” in SID Display Week, pp. 
391–394 (2018). 

[6] Y. Li, B. Yu, C. P. Chen, N. Maitlo, W. Zhang, and L. Mi, 
“Monocular SLAM using probabilistic combination of 
point and line features,” in OSA Imaging and Applied 

Optics, p. 3W2G.7 (2018). 
[7] Y. Li, C. P. Chen, N. Maitlo, L. Mi, W. Zhang, and J. 

Chen, “Deep neural network-based loop detection for 
visual simultaneous localization and mapping featuring 
both points and lines,” Wiley Advanced Intelligent Systems 
2(1), 1900107 (2020). 

[8] C. P. Chen, L. Mi, W. Zhang, J. Ye, and G. Li, 
“Waveguide-based near-eye display with dual-channel exit 
pupil expander,” Displays 67, 101998 (2021). 

 
 


