Near-Eye Displays Using Chiral Liquid Crystal Gratings for Metaverse

Xinyu Ma¹, Tingyu Liu¹, Seak Pang Zou¹, Chao Ping Chen^{1,*}, Qiang Chu¹, and Chul Gyu Jhun² ¹Smart Display Lab, Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai, China ²Department of Semiconductor Engineering, Hoseo University, Asan, Republic of Korea *E-mail: ccp@sjtu.edu.cn*

We present a near-eye display (NED) featuring a triple-channel waveguide for metaverse [1]. Fig. 1 shows a cross-section of our triple-channel waveguide, with its top, middle and bottom layers being referred to as channel 1, channel 2 and channel 3, respectively. The input field of view (FOV) is divided equally into left (FOV₁), center (FOV₂) and right (FOV₃) sub-FOVs, which in turn carry the left-handed (L), right-handed (R) and left-handed circular polarizations. Accordingly, gratings—including the in-coupling and out-coupling—of channel 1/2/3 are responsive merely to FOV_{1/2/3}. This can be fulfilled by adjusting both the polarization selectivity and tilt angles $\theta_{1/2/3}$ of gratings. As a viable option, we opt for chiral liquid crystals [2] as both in-coupling and out-coupling gratings. The greatest benefit of triple-channel waveguide is that, FOV wise, it beats out both the single-channel [3] and dual-channel waveguides [4]. Say the refractive index of waveguide equals 1.8, the upper limit of FOV is $60^{\circ}/88^{\circ}/121^{\circ}$ for the single/dual/triple-channel waveguide, respectively. Another benefit is that the out-coupling regions of different channels could be overlapped. Our results demonstrate that its diagonal FOV reaches 90°, eye relief is 10 mm, exit pupil is 4.9×4.9 mm², transmittance is 4.9%, and uniformity is 89%.

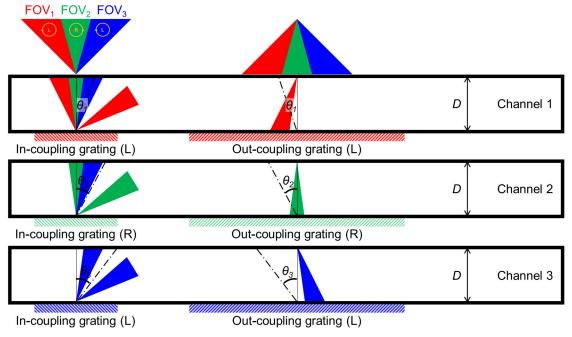


Fig. 1. Schematic drawing of the proposed triple-channel waveguide.

Acknowledgments

This work is sponsored by National Natural Science Foundation of China (61901264, 61831015), Science and Technology Commission of Shanghai Municipality (19ZR1427200), and Natural Science Foundation of Chongqing (cstc2021jcyj-msxmX1136).

References

- 1. C. P. Chen, Y. Cui, Y. Chen, S. Meng, Y. Sun, C. Mao, and Q. Chu, Opt. Express, vol. 30, p. 31256 (2022).
- B. S. Bae, S. Han, S. S. Shin, K. Chen, C. P. Chen, Y. Su, and C. G. Jhun, *Electron. Mater. Lett.*, vol. 9, p. 735 (2013).
- 3. W. Zhang, C. P. Chen, H. Ding, L. Mi, J. Chen, Y. Liu, and C. Zhu, Appl. Sci., vol. 10, p. 3901 (2020).
- 4. C. P. Chen, L. Mi, W. Zhang, J. Ye, and G. Li, Displays, vol. 67, p. 101998 (2021).