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Abstract—As metaverse continues to evolve, near-eye display
technologies are increasingly focused on achieving compactness,
lightweight, and high brightness design. Self-emitting projection
sources have garnered significant attention due to their potential
to meet these requirements. However, current projection sources
typically exhibit a Lambertian-like divergence angle, leading to
challenges in miniaturization and substantial energy loss. In re-
sponse to these issues and inspired by the shape of “mushroom
cap”’, this paper proposes a collimated light-emitting diode array
encapsulated with mushroom-cap optical units for near-eye display
projection engine. The study discusses the optimal parameters for
the limited diode spacing and validates these parameters through
both simulation and experimental results. The mushroom-cap op-
tical units effectively harness the emitting energy, confining the full
width at half maximum of Lambertian sources within the £10°
range, while enhancing the central light intensity by 80 %. The built
experimental prototype demonstrates a significant enhancement
in projection quality and visibility. This design holds promise for
ultra-small self-emitting projection engines, offering robust sup-
port for the high performance and lightweight design of near-eye
display devices.

Index Terms—Light-emitting diode, collimation, projection
engine, near-eye display.
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1. INTRODUCTION

N RECENT years, next-generation near-eye display devices
I such as augmented reality (AR) and virtual reality (VR) have
emerged as focal points in both research and industry [1]. These
innovative display devices are poised to propel us into a new
era known as metaverse, surpassing the era of mobile internet
[2], [3], [4], [5], [6]. Compared to traditional devices, these
next-generation display devices demand denser pixels, brighter
light sources, and an overall lighter and more compact form
factor [7]. This places higher requirements on light sources and
imaging systems, prompting researchers to seek and develop
advanced technologies capable of meeting these conditions.
Traditional display technologies, e.g., liquid crystal display, rely
on external components such as the backlights and color filters
[8], [9]. The presence of these components not only occupies
valuable space but also necessitates complex and bulky support-
ing structures for their operation [ 10]. Constrained by its inherent
principles, traditional display technologies struggle to achieve
high pixel density and consistently face challenges related to
the brightness and ambient reflection [11], [12]. Therefore,
traditional display technologies fall certain short in meeting the
requirements of near-eye display devices. The industry urgently
needs novel display technologies to address the aforementioned
issues.

Recently, researches on self-emissive displays such as organic
light-emitting diodes (OLEDs) [13], [14], [15], micro light-
emitting diodes (Micro-LEDs) [16], [17], [18], and quantum dot
light-emitting diodes (QLEDs) [19], [20] have gained significant
attention. These displays exhibit unprecedented application po-
tential owing to the high brightness and contrast. The primary ad-
vantage of self-emissive displays lies in their independence from
a backlight. By simply assembling a self-emissive display with
the imaging lens group, the generated light can be directly used
for projection engine and further coupled into the combiners,
eliminating the need for complex and cumbersome relay optics
[21], [22], [23], [24], [25]. Consequently, this significantly re-
duces the system volume and weight. Furthermore, self-emissive
displays can independently emit light at each pixel, achiev-
ing higher contrast, more vibrant colors, and faster response
time. This represents a qualitative leap in image quality and
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(a) Schematic of the collimated LED array encapsulated with the MCO. (b) Cross-sectional view and the typical optical path of the LED array. (c)

Schematic diagram of the working principle of an optical waveguide based near-eye display engine.

display performance [26], [27], [28], [29]. These advantages and
characteristics make self-emissive light sources perfectly suited
to meet the requirements of near-eye display devices, positioning
them as the optimal breakthrough for the new era of display
technology.

Current near-eye displays typically have brightness levels
ranging from 1000 to 3000 nits. It is estimated that the ambient
contrast ratio should be at least 10:1 for excellent readability.
Indoor ambient brightness typically ranges around 150 nits,
while outdoor ambient brightness can reach up to 3000 nits on a
sunny day. In comparison, current near-eye display devices still
have a significant shortfall in brightness [23]. Micro-LED tech-
nology offers a notable advantage in providing high brightness
levels, having already achieved brightness levels in the hundreds
of thousands of nits. Micro-LED displays can even provide
brightness levels exceeding 3000000 nits. Therefore, compared
to OLED and QLED technologies, Micro-LED technology has
unparalleled advantages in near-eye display applications [26],
[27], [28], [29].

However, it is noteworthy that despite the mentioned advan-
tages of self-emissive light sources, they also face challenges

related to light utilization efficiency. According to Lambert’s
cosine law, the emission angle of self-emissive light sources can
reach approximately £60°, while the actual usable emission area
for each pixel is less than +=30°. This implies that these light
sources generate a significant amount of “unused” light, which,
without special treatment, cannot be utilized for the projection
engine of near-eye displays and may cause crosstalk interference
with other pixels [30], [31], [32], [33], [34]. Near-eye display
engines typically consist of a collimated light source, a projec-
tion lens group, and a combiner [24], [25]. The light source and
the projection lens together form the optical projection engine,
while the combiner allows the user to see virtual images in
the real world. Currently, the most promising combiner is the
waveguide [6], [25]. In a typical waveguide, the image light
first enters a glass plate through an in-coupler, then undergoes
total internal reflection within the plate, and finally is projected
onto the eye through an out-coupler at the other end, as shown
in Fig. 1(c) [30], [31]. The in-coupler is sensitive to the angle
of the light, and uncollimated light may affect the final image
quality and field of view (FOV), thus requiring collimation of
the light source [1], [25], [29].

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 03,2024 at 08:07:49 UTC from IEEE Xplore. Restrictions apply.



CHEN et al.: COLLIMATED LED ARRAY WITH MUSHROOM-CAP ENCAPSULATION FOR NEAR-EYE DISPLAY PROJECTION ENGINE

Common collimation methods include the freeform curved
lenses [41], reflectors [42], holographic optical elements [43],
etc. Nevertheless, these methods consistently achieve collima-
tion by treating the display panel as a surface source [32].
Therefore, it is necessary to implement pixel-level collimation
for self-emissive light sources, restricting their emission an-
gles and enhancing their luminous efficiency to better align
with the requirements of near-eye display devices. Collima-
tion methods for a single pixel primarily utilize lens array
[36], while others have proposed the use of metasurfaces for
collimation [44], as well as the techniques involving photonic
crystals [45] and resonant cavities [46]. Potential issues include
a high reliance on incident light and challenges in precise
processing.

As shown in Fig. 1(a), inspired by the appearance of “mush-
room cap”, this paper introduces a novel collimated LED
array structure with the encapsulation of mushroom-cap optical
(MCO) units. This structure achieves LED pixel-level collima-
tion and consists of two parts: the lower portion is a tilt reflector,
and the upper portion is a hemispherical micro-lens. The tilt
reflector reflects the aforementioned “unused” light, guiding it
into the micro-lens. As a result, almost all light emitted from
the LED pixel can be collimated by the micro-lens. The MCO
structure significantly enhances light intensity, restricting the
full width at half maximum (FWHM) within a quite small
angular range, effectively avoiding crosstalk with other pixels.

The structural arrangement of this paper is as follows: Sec-
tion II elaborates on the design principles of the MCO structure,
determining optimal parameters for each component through
simulation. This aims to provide theoretical guidance for sub-
sequent experiments and applications. Section III validates the
collimation performance and projection effects of the device
through experiments. Finally, Section IV summarizes the main
conclusions of the study and provides prospects for its applica-
tion in near-eye display devices.

II. DESIGN AND SIMULATION
A. Design Principle

In order to streamline the calculation process for the MCO,
the point light source approximation method is employed as
the assumption. Leveraging geometric relationships, we can
readily derive the interrelations among various angles according
to Fig. 1(b).

h=7%5—-0
0o = arcsin %
o . h-cosfs
03 = arcsin 72 (D

04 = arcsin (n - sin 03)
95 - g+02+03—04

where n is the refractive index of micro-lens, R is the radius of
the micro-lens, % is the length of the tilt reflector, 6 denotes
the angle with the horizontal plane when the light exits, 05
represents the final angle of the emitted light with respect to
the horizontal plane. Obviously, the ultimate emission angle is
solely dependent on these parameters along with the initial angle
emitted from the LED.
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Similarly, the angles of light emitted after reflection by the tilt
reflector can be determined through geometric relationships.

* T
. sinfy
5 = arcsin ——
n .
7[ h___ _rsin6 ] sin(a-6)
fana sin(a-6) ] sin(2a-0) (2)
R-cos 07
* : : *
0; = arcsin (n - sin 6%)

05 =1 —03+06; 0,

03 = arcsin

In the above formula, o denotes the angle between the tilt
reflector and the horizontal plane. 07 denotes the angle between
the light reflected by the tilt reflector and then collimated by
the micro-lens and the horizontal plane. And the rest of the
parameters with an asterisk correspond to (1).

To gain further insights into the impact of various structural
parameters on the collimation performance, a three-dimensional
Monte Carlo ray-tracing method is introduced. Systematically,
the brightness enhancement and corresponding FWHM char-
acteristics of the MCO are evaluated. During the simulation,
considering practical situations, the light source volume was set
to 20 um x 15 pum x 5 pm, the pixel pitch was set to 80 um,
and the refractive index of the micro-lens was respectively set
to 1.5. The initial height and tilt angle of the tilt reflector were
set to 30 um and 55° to comprehensively consider the impact
of different parameter combinations. This helps us gain a more
comprehensive understanding of the performance characteris-
tics of the MCO.

B. Analysis on the Micro-Lens Size

In the simulation, the distance between the micro-lens and
the light source were set to 30 pum, obtaining results as shown in
Fig. 2(a). As depicted, we conducted simulations on the micro-
lens radius within the range of 15 to 40 pm, discussing the impact
of the radius on collimation performance.

With the continuous increase in the micro-lens radius, the
maximum light intensity significantly improves. The light flux
within +20° also increases, and during this process, the FWHM
steadily decreases. Except for the light flux within 420°,
the optimal values for the other two indicators appear when
the micro-lens radius is 40 pm. At the micro-lens radius of
40 pm, the maximum light intensity can reach 14 times that
of the untreated LED, which is seven times that of a micro- lens
radius of 15 gm. The FWHM is only £11.5°, and the light flux
within £20° can reach 4.8 times that of the untreated case.

Impressively, the MCO can achieve excellent collimation
for the incoming Lambertian light. It can be considered that
with the increase in the micro-lens radius, the collimation effect
of the MCO improves. Therefore, the aperture of the micro-lens
should be as close as possible to the pixel pitch to achieve better
collimation effects.

C. Analysis on the Micro-Lens Position

The height of micro-lens placement has a great influence on
the collimation performance. The micro-lens with the optimal
radius of 40 pm is used for analysis. As shown in Fig. 2(b), the
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Fig. 2. Maximum light intensity, FWHM, and light flux within £20° cor-

responding to different micro-lens radius at the same placement height. (b)
Maximum light intensity, FWHM, and light flux within £20° corresponding
to different micro-lens placement heights at the same micro-lens radius.

micro-lens placement height within the range of 20 to 60 pum
are simulated.

With the increase in height, the maximum light intensity
shows a trend of first increasing and then decreasing. At the
distance of 30 pum from the LED, the maximum light intensity
reaches its peak, being 14 times that of the untreated case.
The FWHM steadily decreases with the increase in micro-lens
placement height, and the light flux within +20° follows the
same trend. Since these three indicators are crucial for the final
collimation effect, a micro-lens distance of 35 ym from the LED
is the most suitable after comprehensive consideration. At this
height, the maximum light intensity is 13.7 times that of the
untreated case, while the FWHM is only £9.8°, and the light
flux within £20° increases to 3.94 times that of the untreated
case. In the case of this LED, the optimal collimation effect can
be achieved by positioning a micro-lens with a 40 pm radius at
a distance of 35 pm.

D. Design of Tilt Reflector

The main parameters of the tilt reflector include length, tilt
angle, and aperture size. Since the aperture of the tilt reflector
must match the micro-lens diameter, the tilt angle and length
are entirely correlated. That means the larger the tilt angle is,
the longer the length is. Therefore, the influence of the tilt angle
on collimation performance with a fixed aperture is emphasized
here.

From Fig. 3(a), it is evident that using only the tilt reflector
already has a certain degree of collimation. As the tilt angle
increases, both the maximum light intensity and the light flux
within +-20° show an increasing trend, while the FWHM exhibits
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Fig. 3. (a) Maximum light intensity, FWHM, and light flux within +20°
corresponding to different tilt angles of the tilt reflector for the same aperture
size. (b) Influence of different tilt angles of the tilt reflector on the collimation
performance of MCO.

a gradual decrease. However, it is worth noting that when using
only the tilt reflector, apart from the light flux within the £20°
range, this specific indicator is relatively superior to the MCO,
the other two indicators differ significantly.

E. Design of the MCO

After separately discussing the optimal parameters for the
micro-lens and tilt reflector, this section will explore the best
parameters for their combination as the MCO. The micro-lens
radius is fixed at 40 pm, so the primary consideration is the tilt
angle of the tilt reflector’s impact on the MCO. As shown in
Fig. 3(b), it is observed that the FWHM tends to decrease as the
tiltangle increases up to 60°. The maximum light intensity shows
a trend of initially increasing and then decreasing, reaching its
peak at a tilt angle of 50°, while the light flux within +20°
gradually decreases with increasing tilt angle. Considering all
three indicators, we can conclude that the optimal range for the
tilt angle is between 45° and 65°.

The trend of maximum light intensity in Fig. 3(b) is similar to
the trend after 30 pm in Fig. 2(b). The length of the tilt reflector
for a tilt angle of 50° is approximately 31.5 pm, close to 30 pym.
Therefore, it can be considered that the gain in maximum light
intensity for the MCO is mainly provided by the micro-lens.
Similarly, before the tilt angle of 60°, the FWHM remains at a
relatively low value, indicating the influence of the micro-lens.

FE. Comprehensive Discussion on MCO Parameters

To determine the optimal parameter intervals for MCO, we
conducted tests with a step size of 5 pum, ranging the radius
from 15 to 40 pm and the distance from 15 to 60 pm. The
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TABLE I
EFFECT OF DIFFERENT RADII AND DISTANCES OF MCO ON FWHM
Distance (pm)
20 25 30 40 45 50 55 60
Radius (um)
15 41.33° 46.56° 58.44° 66.68° 47.44° 65.32° 67° 67.25° 67.131°
20 37.55° 32.25° 31.18° 40.37° 49.69° 51.99° 51.15° 52.25° 52.56°
25 34.03° 29.8° 25.67° 25° 27.35° 36.86° 41.39° 42 .82° 42.96°
30 30.42° 27.5° 24.41° 21.97° 20.93° 25.11° 28.58° 36.1° 35.96°
35 31° 24.89° 22.9° 21° 19.1° 17.3° 18.95° 24.36° 28.9°
40 38° 24.8° 21° 19.7° 18° 16.5° 15.6° 16.43° 18.7°
TABLE 11
EFFECT OF DIFFERENT RADII AND DISTANCES OF MCO ON NORMALIZED MAXIMUM LIGHT INTENSITY
Distance (pm)
20 25 30 35 40 45 50 55 60
Radius (pm)
15 0.15 0.14 0.13 0.12 0.12 0.12 0.11 0.11 0.12
20 0.26 0.25 0.23 0.21 0.2 0.18 0.18 0.17 0.17
25 0.42 0.4 0.38 0.34 0.31 0.29 0.26 0.26 0.25
30 0.59 0.57 0.56 0.51 0.47 0.42 0.4 0.36 0.35
35 0.64 0.78 0.77 0.74 0.68 0.62 0.54 0.52 0.48
40 0.53 0.86 1 0.98 0.94 0.87 0.79 0.68 0.65
TABLE III
EFFECT OF DIFFERENT RADII AND DISTANCES OF MCO ON NORMALIZED LUMINOUS FLUX WITHIN £+20°
Distance (um)
20 25 30 35 40 45 50 55 60
Radius (um)
15 0.3 0.25 0.23 0.23 0.24 0.24 0.25 0.25 0.25
20 0.51 0.39 0.34 0.32 0.34 0.35 0.35 0.35 0.37
25 0.72 0.56 0.44 0.44 0.44 0.45 0.45 0.45 0.48
30 0.87 0.72 0.58 0.52 0.54 0.56 0.56 0.55 0.56
35 0.96 0.86 0.73 0.66 0.61 0.62 0.65 0.66 0.66
40 1 0.99 0.86 0.77 0.7 0.68 0.66 0.69 0.75

detailed results are presented in Tables I-III. Clearly, the MCO
with a radius of 40 pm consistently outperforms in all three
metrics. Additionally, the impact of MCO with different radii
on collimation exhibits a similar trend: the maximum light in-
tensity increases initially and then decreases, FWHM decreases
initially and then increases, while the light flux within £20°
increases initially and then decreases. Overall, the MCO with a
radius of 40 pm demonstrates excellent collimation performance

within the range of 25 to 50 ym from the light source. When
converted to tilt angles, it corresponds to approximately 42° to
62°, which closely aligns with the results in Fig. 3(b). Therefore,
the optimal parameter range for this design can be determined as
amicro-lens radius of 40 m and a tilt reflector tilt angle between
42° to 62°.

Since the illumination uniformity of the micro projector en-
gine is crucial for the imaging of near-eye display. As shown
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(a) Homogeneous rectangular illumination at a distance of 10xm from the light source; (b) Normalized irradiance distribution along the reference line in

the rectangular illumination area at a distance of 10 um from the light source; (c) Homogeneous rectangular illumination at a distance of 3000 pm from the light
source; (d) Normalized irradiance distribution along the reference line in the rectangular illumination area at a distance of 3000 pm from the light source.

in the Fig. 4, we tested the illuminance at distances of 10 pm
and 3000 pm from the light source using the MCO with a
tilt angle of 50°. Fig. 4(a) and (b) illustrates the illuminance
distribution at a distance of 10 pm from the light source, while
Fig. 4(c) and (d) depicts the illuminance distribution at a distance
of 3000 pm from the light source. At the position 10 pm away
from the light source, it can be considered as closely adjacent to
the source. From Fig. 4(b), it is observed that the illuminance at
the pixel center remains relatively consistent, and the boundaries
between different pixels are clearly defined. Therefore, as a

self-luminous display panel, its illuminance performance should
be acceptable. At a distance of 3000 xm from the light source,
it can be regarded as an application scenario of illumination
for a non-self-luminous micro-display panel. In this case, the
overall illuminance distribution appears quite uniform, as can
be seen in Fig. 4(d). Thus, considering the above two sets of
data collectively, we can conclude that whether used as a self-
luminous display panel or an illumination light source, coupled
with MCO, it can achieve outstanding illuminance distribution
effects.
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We also discussed the impact of LED size on the efficiency of
MCO, and the results are presented in Fig. 5. The trends of the
three datasets are quite apparent, showing a continuous decrease
as the LED size increases. Therefore, it can be inferred that the
efficiency of MCO increases with a higher ratio of MCO radius
to LED size.

G. Comparison Between Traditional Black Matrix and MCO

In traditional LED designs, micro-lenses are often paired with
a black matrix to achieve collimation. The black matrix effec-
tively absorbs stray light, preventing light crosstalk between
pixels, while micro-lenses are used for collimation. However,
this also implies a decrease in light utilization efficiency. Con-
sequently, the anisotropic backlight units could be a potential
solution to replace black matrices [47]. Our proposed MCO
can well replace the traditional black matrix, because the light
absorbed by the black matrix can be effectively utilized through
reflection. Here, the tilt angle of the tilt reflector represents its
length, and their efficiency is compared with the traditional black
matrix at the same height.

Based on the analysis in Section II-E, we have determined
that the optimal efficiency of MCO occurs at tilt angles between
45° and 60°. Therefore, in this section, MCOs with tilt angles of
50°, 55°, and 60° will be selected and compared with the black
matrix at the same height.

As shown in Fig. 6(a), comparing the maximum light intensity
and FWHM, it can be observed that at the same height, the MCO
has a slightly higher efficiency gain in maximum light intensity
compared to the traditional black matrix, while the difference
in FWHM is not significant. From Fig. 6(b), it is evident that
within the £20° range, the MCO’s efficiency improvement is
significantly superior to that of the traditional black matrix. The
reasons for these phenomena are mainly due to the dominant role
played by the micro-lens in collimation. At the same height,
the light directly entering the micro-lens from the LED is the
same, with the only difference being the light that cannot directly
enter the micro-lens, i.e., those large angular rays. The traditional
black matrix directly absorbs these rays, while the MCO’s tilt
reflector reflects this portion of light, allowing it to enter the
micro-lens. After collimation, this portion of light is mainly
distributed within the £20° range. Therefore, although it may
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Fig. 6. (a) Comparison of the light intensity patterns between three different
heights of MCO and the traditional black matrix. (b) Comparison of the light
flux within the range between three different heights of MCO and the traditional
black matrix.

not significantly enhance the maximum light intensity, it can
significantly increase the light flux within £20°.

III. EXPERIMENT

A projection prototype is established to evaluated the col-
limation performance via an amplification validation to the
second section. The light intensity distribution of the LED
array is measured using the SRC200 photometer from Everfine
Optoelectronics. The LED array projectors with and without the
MCO are shown in Fig. 7(a). From Fig. 7(b), each individual
LED pixel has a size of 2 mm x 1.5 mm x 0.5 mm, and the
pixel pitch is 8 mm. A 3 x 3 LED array is used for theoretical
validation. Fig. 7(c) shows the fabricated MCO device. The
actual projection prototype setup constructed on the optical
platform consists of a LED light source array with MCO, a
projection lens, and an imaging screen, as depicted in Fig. 7(d)
and (e), showing the side and front views of the implemented
projection apparatus. The projection lens used is provided by
Azure Photonics, with a focal length of 37.5 mm and an f-number
of 2.5. The horizontal field of view is 13.4°.

It can be observed that the maximum light intensity is in-
creased tenfold when using the MCO compared to the original
LED array. Additionally, FWHM is controlled to reflector, and
the array combined with the MCO. After normalizing the ob-
tained results, we obtained the results around £10°, consistent
with the simulation results in the second section. The tilt reflector
alone also exhibits a certain collimation effect. From Fig. 7(f),
it can be seen that the tilt reflector used in the experiment
can constrain the FWHM to around +30°, with the maximum
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light intensity approximately 70% of that with the MCO. This
discrepancy is mainly attributed to the LED array undergoing
uniform light treatment, resulting in emitted light that is not a
standard Lambertian distribution.

Fig. 7(g) shows three imaging results, representing, from top
to bottom, without the MCO, with only a tilt reflector, and
with the MCO device. The initial projection effect of the LED
projector without the MCO is poor, with very dim brightness,
making it challenging to discern even the details of a cat. The
use of the tilt reflector improves the projection effect compared
to the untreated LED array, but still loses some image details due
to insufficient brightness. It is evident that the LED projection
engine after collimation with the MCO yields the brightest image
with better projection effect, showcasing clear and detailed

image details. Furthermore, it can be observed that the unifor-
mity of the overall imaging is remarkably excellent.

IV. CONCLUSION

To meet the demands of near-eye displays [48], [49], this paper
proposes a collimated LED array enlightened by the “mushroom
cap” for near-eye display projection engines. Encapsulated in
this manner, the FWHM of the LED array can be effectively
controlled within the range of +10°, resulting in a significant
enhancement of central light intensity, and a notable increase in
light flux within +20°. Through the prototype establishment and
experimental validation, our findings demonstrate that the LED
light source array after collimation with the MCO achieves better
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and brighter imaging. In comparison with other collimation
methods, the MCO exhibits significant improvements in one
or more metrics. It is believed that the integration of MCO
with LED projection engine can effectively achieve the high
brightness required for near-eye display devices.
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